Inverters

Inverters Rating: 3,7/5 8083 votes

足Everyone uses some kind of electronic gadget while in their motor-home, SUV or car. You might listen to your MP3 player, check for directions on your global positioning system (GPS) or play a portable video game. These types of electronic devices can be recharged or powered by plugging them into the cigarette lighter (or power port) in your vehicle.

But what if you want to use something a little more elaborate while you're on the open road? Maybe you want to make toast, watch an LCD TV, or perhaps even write an article on your laptop computer. These devices plug into regular wall outlets, not cigarette lighters. Making sure your electronic gear gets the juice it needs while on the road isn't a simple matter of finding the right adapter. You need a power inverter.

Inverters are used in stand alone photovoltaic systems for powering electrical devices of isolated houses, mountain huts, camper vans and boats, and are also used in grid-connected photovoltaic systems to enter the current produced by the plant directly into the power grid distribution (photovoltaic inverters). Power Inverters specializes in dc to ac power solutions for mobile and off grid power supplies. We offer the best inverter for home dc to ac conversions and our inverter chargers offer an uninterruptible power supply excellent for a home ups.

Advertisement

足Power inverters convert direct current (DC), the power that comes from a car battery, into alternating current (AC), the kind of power supplied to your home and the power larger electronics need to function. What kind of power inverter is the right one for the job? How do you install one? And how exactly does an inverter change the current from one form to another? In this article, we'll explore all the positives and negatives of DC to AC power inverters.

Overview of solar-plant invertersA power inverter, or inverter, is a device or circuitry that changes (DC) to (AC).The input, output voltage and frequency, and overall handling depend on the design of the specific device or circuitry. The inverter does not produce any power; the power is provided by the DC source.A power inverter can be entirely electronic or may be a combination of mechanical effects (such as a rotary apparatus) and electronic circuitry.Static inverters do not use moving parts in the conversion process.Power inverters are primarily used in electrical power applications where high currents and voltages are present; circuits that perform the same function for electronic signals, which usually have very low currents and voltages, are called. Circuits that perform the opposite function, converting AC to DC, are called. Contents.Input and output Input voltage A typical power inverter device or circuit requires a relatively stable DC power source capable of supplying enough current for the intended power demands of the system. The input voltage depends on the design and purpose of the inverter. Sine wave Sine wave A power inverter device which produces a multiple step sinusoidal AC waveform is referred to as a sine wave inverter.

To more clearly distinguish the inverters with outputs of much less distortion than the modified sine wave (three step) inverter designs, the manufacturers often use the phrase pure sine wave inverter. Almost all consumer grade inverters that are sold as a 'pure sine wave inverter' do not produce a smooth sine wave output at all, just a less choppy output than the square wave (two step) and modified sine wave (three step) inverters.

However, this is not critical for most electronics as they deal with the output quite well.Where power inverter devices substitute for standard line power, a sine wave output is desirable because many electrical products are engineered to work best with a sine wave AC power source. The standard electric utility provides a sine wave, typically with minor imperfections but sometimes with significant distortion.Sine wave inverters with more than three steps in the wave output are more complex and have significantly higher cost than a modified sine wave, with only three steps, or square wave (one step) types of the same power handling. (SMPS) devices, such as personal computers or DVD players, function on modified sine wave power. AC motors directly operated on non-sinusoidal power may produce extra heat, may have different speed-torque characteristics, or may produce more audible noise than when running on sinusoidal power.Modified sine wave.

Waveform produced by a cigarette lighter 12 volt DC to 120 V AC 60 Hz inverterThe modified sine wave output of such an inverter is the sum of two one of which is phase shifted 90 degrees relative to the other. The result is three level waveform with equal intervals of zero volts; peak positive volts; zero volts; peak negative volts and then zero volts. This sequence is repeated.

The resultant wave very roughly resembles the shape of a sine wave. Most inexpensive consumer power inverters produce a modified sine wave rather than a pure sine wave.The waveform in commercially available modified-sine-wave inverters resembles a square wave but with a pause during the polarity reversal.

Switching states are developed for positive, negative and zero voltages. If the waveform is chosen to have its peak values for half of the cycle time, the peak voltage to voltage ratio is the same as for a sine wave. The DC bus voltage may be actively regulated, or the 'on' and 'off' times can be modified to maintain the same RMS value output up to the DC bus voltage to compensate for DC bus voltage variations. By changing the pulse width, the harmonic spectrum can be changed. The lowest THD for a three-step modified sine wave is 30% when the pulses are at 130 degrees width of each electrical cycle. This is slightly lower than for a square wave.The ratio of on to off time can be adjusted to vary the RMS voltage while maintaining a constant frequency with a technique called (PWM). The generated gate pulses are given to each switch in accordance with the developed pattern to obtain the desired output.

Harmonic spectrum in the output depends on the width of the pulses and the modulation frequency. It can be shown that the minimum distortion of a three-level waveform is reached when the pulses extend over 130 degrees of the waveform, but the resulting voltage will still have about 30% THD, higher than commercial standards for grid-connected power sources. When operating induction motors, voltage harmonics are usually not of concern; however, harmonic distortion in the current waveform introduces additional heating and can produce pulsating torques.Numerous items of electric equipment will operate quite well on modified sine wave power inverter devices, especially loads that are resistive in nature such as traditional incandescent light bulbs. Items with a operate almost entirely without problems, but if the item has a mains transformer, this can overheat depending on how marginally it is rated.However, the load may operate less efficiently owing to the harmonics associated with a modified sine wave and produce a humming noise during operation. This also affects the efficiency of the system as a whole, since the manufacturer's nominal conversion efficiency does not account for harmonics. Therefore, pure sine wave inverters may provide significantly higher efficiency than modified sine wave inverters.Most AC motors will run on MSW inverters with an efficiency reduction of about 20% owing to the harmonic content.

However, they may be quite noisy. A series LC filter tuned to the fundamental frequency may help.A common modified sine wave inverter topology found in consumer power inverters is as follows:An onboard microcontroller rapidly switches on and off power at high frequency like 50 kHz. The MOSFETs directly pull from a low voltage DC source (such as a battery). This signal then goes through step-up transformers (generally many smaller transformers are placed in parallel to reduce the overall size of the inverter) to produce a higher voltage signal. The output of the step-up transformers then gets filtered by capacitors to produce a high voltage DC supply. Finally, this DC supply is pulsed with additional power MOSFETs by the microcontroller to produce the final modified sine wave signal.More complex inverters use more than two voltages to form a multiple-stepped approximation to a sine wave. Inverter designed to provide 115 V AC from the 12 V DC source provided in an automobile.

The unit shown provides up to 1.2 amperes of alternating current, or enough to power two 60 W light bulbs.An inverter converts the DC electricity from sources such as or to AC electricity. The electricity can be at any required voltage; in particular it can operate AC equipment designed for mains operation, or rectified to produce DC at any desired voltage.Uninterruptible power supplies An (UPS) uses batteries and an inverter to supply AC power when mains power is not available.

When mains power is restored, a supplies DC power to recharge the batteries.Electric motor speed control Inverter circuits designed to produce a variable output voltage range are often used within motor speed controllers.The DC power for the inverter section can be derived from a normal AC wall outlet or some other source. Control andfeedback circuitry is used to adjust the final output of the inverter section which will ultimately determine thespeed of the motor operating under its mechanical load. Motor speed control needs are numerous and includethings like: industrial motor driven equipment, electric vehicles, rail transport systems, and power tools.(See related: )Switching states are developed for positive, negative and zero voltages as per the patterns given in the switching Table 1. The generated gate pulses are given to each switch in accordance with the developed pattern and thus the output is obtained.In refrigeration compressors An inverter can be used to control the speed of the motor to drive in a or system to regulate system performance. Such installations are known as.

Traditional methods of refrigeration regulation use single-speed compressors switched on and off periodically; inverter-equipped systems have a that control the speed of the motor and thus the compressor and cooling output. The variable-frequency AC from the inverter drives a or, the speed of which is proportional to the frequency of the AC it is fed, so the compressor can be run at variable speeds—eliminating compressor stop-start cycles increases efficiency. A typically monitors the temperature in the space to be cooled, and adjusts the speed of the compressor to maintain the desired temperature.

The additional electronics and system hardware add cost to the equipment, but can result in substantial savings in operating costs. The first inverter air conditioners were released by Toshiba in 1981, in Japan. Power grid are designed to feed into the electric power distribution system. They transfer synchronously with the line and have as little harmonic content as possible.

They also need a means of detecting the presence of utility power for safety reasons, so as not to continue to dangerously feed power to the grid during a power outage.are inverters that are designed to simulate a rotating generator, and can be used to help stabilize grids. They can be designed to react faster than normal generators to changes in grid frequency, and can give conventional generators a chance to respond to very sudden changes in demand or production.Large inverters, rated at several hundred megawatts, are used to deliver power from transmission systems to alternating current distribution systems.Solar. Main article:A is a (BOS) component of a and can be used for both and systems. Solar inverters have special functions adapted for use with arrays, including and protection.differ from conventional inverters, as an individual micro-inverter is attached to each solar panel.

This can improve the overall efficiency of the system. The output from several micro-inverters is then combined and often fed to the.In other applications, a conventional inverter can be combined with a battery bank maintained by a solar charge controller. This combination of components is often referred to as a solar generator. Induction heating Inverters convert low frequency main AC power to higher frequency for use in. To do this, AC power is first rectified to provide DC power.

The inverter then changes the DC power to high frequency AC power. Due to the reduction in the number of DC sources employed, the structure becomes more reliable and the output voltage has higher resolution due to an increase in the number of steps so that the reference sinusoidal voltage can be better achieved. This configuration has recently become very popular in AC power supply and adjustable speed drive applications. This new inverter can avoid extra clamping diodes or voltage balancing capacitors.There are three kinds of level shifted modulation techniques, namely:. Phase Opposition Disposition (POD). Alternative Phase Opposition Disposition (APOD).

Phase Disposition (PD)HVDC power transmission With power transmission, AC power is rectified and high voltage DC power is transmitted to another location. At the receiving location, an inverter in a converts the power back to AC. The inverter must be synchronized with grid frequency and phase and minimize harmonic generation.Electroshock weapons and have a DC/AC inverter to generate several tens of thousands of V AC out of a small 9 V DC battery. First the 9 V DC is converted to 400–2000 V AC with a compact high frequency transformer, which is then rectified and temporarily stored in a high voltage capacitor until a pre-set threshold voltage is reached.

When the threshold (set by way of an airgap or TRIAC) is reached, the capacitor dumps its entire load into a which then steps it up to its final output voltage of 20–60 kV. Inverter circuit with transistor switches and antiparallel diodesThere are many different power circuit and used in inverter designs.

Different design approaches address various issues that may be more or less important depending on the way that the inverter is intended to be used.Based on the basic H-bridge topology, there are two different fundamental control strategies called basic frequency-variable bridge converter and PWM control. Here, in the left image of H-bridge circuit, the top left switch is named as 'S1', and others are named as 'S2, S3, S4' in counterclockwise order.For the basic frequency-variable bridge converter, the switches can be operated at the same frequency as the AC in the electric grid (60 Hz in the U.S.). However, it is the rate at which the switches open and close that determines the AC frequency.

When S1 and S4 are on and the other two are off, the load is provided with positive voltage and vice versa. We could control the on-off states of the switches to adjust the AC magnitude and phase. We could also control the switches to eliminate certain harmonics. This includes controlling the switches to create notches, or 0-state regions, in the output waveform or adding the outputs of two or more converters in parallel that are phase shifted in respect to one another.Another method that can be used is PWM. Unlike the basic frequency-variable bridge converter, in the PWM controlling strategy, only two switches S3, S4 can operate at the frequency of the AC side or at any low frequency. The other two would switch much faster (typically 100 KHz) to create square voltages of the same magnitude but for different time duration, which behaves like a voltage with changing magnitude in a larger time-scale.These two strategies create different harmonics.

For the first one, through Fourier Analysis, the magnitude of harmonics would be 4/(pi.k) (k is the order of harmonics). So the majority of the harmonics energy is concentrated in the lower order harmonics. Meanwhile, for the PWM strategy, the energy of the harmonics lie in higher-frequencies because of the fast switching. Their different characteristics of harmonics leads to different THD and harmonics elimination requirements.

Similar to 'THD', the conception 'waveform quality' represents the level of distortion caused by harmonics. The waveform quality of AC produced directly by H-bridge mentioned above would be not as good as we want.The issue of waveform quality can be addressed in many ways. And can be used to the waveform. If the design includes a, filtering can be applied to the primary or the secondary side of the transformer or to both sides. Are applied to allow the fundamental component of the waveform to pass to the output while limiting the passage of the harmonic components.

If the inverter is designed to provide power at a fixed frequency, a filter can be used. For an adjustable frequency inverter, the filter must be tuned to a frequency that is above the maximum fundamental frequency.Since most loads contain inductance, feedback or are often connected across each switch to provide a path for the peak inductive load current when the switch is turned off. The antiparallel diodes are somewhat similar to the used in AC/DC converter circuits. WaveformSignaltransitionsper periodHarmonicseliminatedHarmonicsamplifiedSystemdescription22-levelsquare wave45%43, 9, 27, 3-levelmodified sine wave23.8%85-levelmodified sine wave6.5%103, 5, 9, 277, 11, 2-levelvery slow PWM123, 5, 9, 277, 11, 3-levelvery slow PWMFourier analysis reveals that a waveform, like a square wave, that is anti-symmetrical about the 180 degree point contains only odd harmonics, the 3rd, 5th, 7th, etc.

Waveforms that have steps of certain widths and heights can attenuate certain lower harmonics at the expense of amplifying higher harmonics. For example, by inserting a zero-voltage step between the positive and negative sections of the square-wave, all of the harmonics that are divisible by three (3rd and 9th, etc.) can be eliminated. That leaves only the 5th, 7th, 11th, 13th etc. The required width of the steps is one third of the period for each of the positive and negative steps and one sixth of the period for each of the zero-voltage steps.Changing the square wave as described above is an example of pulse-width modulation. Modulating, or regulating the width of a square-wave pulse is often used as a method of regulating or adjusting an inverter's output voltage. When voltage control is not required, a fixed pulse width can be selected to reduce or eliminate selected harmonics.

Harmonic elimination techniques are generally applied to the lowest harmonics because filtering is much more practical at high frequencies, where the filter components can be much smaller and less expensive. Multiple pulse-width or carrier based PWM control schemes produce waveforms that are composed of many narrow pulses. The frequency represented by the number of narrow pulses per second is called the switching frequency or carrier frequency. These control schemes are often used in variable-frequency motor control inverters because they allow a wide range of output voltage and frequency adjustment while also improving the quality of the waveform.Multilevel inverters provide another approach to harmonic cancellation. Multilevel inverters provide an output waveform that exhibits multiple steps at several voltage levels.

Picross e2 solutions. Available now Redeem game code. $5.99 Buy download. Eligible for up to points This is the sequel to Picross e with a navigation feature to make gameplay even smoother.

For example, it is possible to produce a more sinusoidal wave by having split-rail inputs at two voltages, or positive and negative inputs with a central. By connecting the inverter output terminals in sequence between the positive rail and ground, the positive rail and the negative rail, the ground rail and the negative rail, then both to the ground rail, a stepped waveform is generated at the inverter output.

This is an example of a three level inverter: the two voltages and ground. More on achieving a sine wave inverters produce sine waves with to remove the harmonics from a simple square wave. Typically there are several series- and parallel-resonant LC circuits, each tuned to a different harmonic of the power line frequency. This simplifies the electronics, but the inductors and capacitors tend to be large and heavy. Its high efficiency makes this approach popular in large in data centers that run the inverter continuously in an 'online' mode to avoid any switchover transient when power is lost.(See related: )A closely related approach uses a ferroresonant transformer, also known as a, to remove harmonics and to store enough energy to sustain the load for a few AC cycles.

This property makes them useful in to eliminate the switchover transient that otherwise occurs during a power failure while the normally idle inverter starts and the mechanical relays are switching to its output.Enhanced quantization A proposal suggested in Power Electronics magazine utilizes two voltages as an improvement over the common commercialized technology, which can only apply DC bus voltage in either direction or turn it off. The proposal adds intermediate voltages to the common design. Each cycle sees the following sequence of delivered voltages: v1, v2, v1, 0, −v1, −v2, −v1.

Three-phase inverters. Three-phase inverter with wye connected loadinverters are used for applications and for high power applications such as power transmission. A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals.

For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform. This creates a line-to-line output waveform that has six steps.

The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above. When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled. To construct inverters with higher power ratings, two six-step three-phase inverters can be connected in parallel for a higher current rating or in series for a higher voltage rating. In either case, the output waveforms are phase shifted to obtain a 12-step waveform. If additional inverters are combined, an 18-step inverter is obtained with three inverters etc. Although inverters are usually combined for the purpose of achieving increased voltage or current ratings, the quality of the waveform is improved as well.Size Compared to other household electric devices, inverters are large in size and volume.

In 2014, together with started an open competition named, with a prize money of $1,000,000, to build a (much) smaller power inverter. History Early inverters From the late nineteenth century through the middle of the twentieth century, DC-to-AC was accomplished using or sets (M-G sets). In the early twentieth century, and began to be used as switches in inverter circuits.

The most widely used type of tube was the.The origins of electromechanical inverters explain the source of the term inverter. Early AC-to-DC converters used an induction or synchronous AC motor direct-connected to a generator (dynamo) so that the generator's commutator reversed its connections at exactly the right moments to produce DC.

A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip rings at one end and a commutator at the other and only one field frame. The result with either is AC-in, DC-out. With an M-G set, the DC can be considered to be separately generated from the AC; with a synchronous converter, in a certain sense it can be considered to be 'mechanically rectified AC'. Given the right auxiliary and control equipment, an M-G set or rotary converter can be 'run backwards', converting DC to AC. Hence an inverter is an inverted converter. Controlled rectifier inverters Since early transistors were not available with sufficient voltage and current ratings for most inverter applications, it was the 1957 introduction of the or (SCR) that initiated the transition to inverter circuits.

12-pulse line-commutated inverter circuitThe commutation requirements of SCRs are a key consideration in SCR circuit designs. SCRs do not turn off or commutate automatically when the gate control signal is shut off. They only turn off when the forward current is reduced to below the minimum holding current, which varies with each kind of SCR, through some external process. For SCRs connected to an AC power source, commutation occurs naturally every time the polarity of the source voltage reverses. SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required.

The least complicated SCR circuits employ natural commutation rather than forced commutation. With the addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above.In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode. In the inversion mode, a controlled rectifier circuit operates as a line commutated inverter. This type of operation can be used in HVDC power transmission systems and in operation of motor control systems.Another type of SCR inverter circuit is the current source input (CSI) inverter. A CSI inverter is the of a six-step voltage source inverter. With a current source inverter, the DC power supply is configured as a rather than a. The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a stepped current waveform.

CSI inverter commutation methods include load commutation and parallel capacitor commutation. With both methods, the input current regulation assists the commutation. With load commutation, the load is a synchronous motor operated at a leading power factor.As they have become available in higher voltage and current ratings, semiconductors such as transistors or that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits.Rectifier and inverter pulse numbers Rectifier circuits are often classified by the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage. A is a one-pulse circuit and a is a two-pulse circuit. A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit.With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings. The rectifier inputs are supplied from special transformers that provide phase shifted outputs. This has the effect of phase multiplication.

Six phases are obtained from two transformers, twelve phases from three transformers and so on. The associated rectifier circuits are 12-pulse rectifiers, 18-pulse rectifiers and so on.When controlled rectifier circuits are operated in the inversion mode, they would be classified by pulse number also.

Rectifier circuits that have a higher pulse number have reduced harmonic content in the AC input current and reduced ripple in the DC output voltage. In the inversion mode, circuits that have a higher pulse number have lower harmonic content in the AC output voltage waveform.Other notes The large switching devices for power transmission applications installed until 1970 predominantly used.Modern inverters are usually solid state (static inverters). A modern design method features components arranged in an configuration.This design is also quite popular with smaller-scale consumer devices. See also.References.